Papers
Topics
Authors
Recent
2000 character limit reached

An Open-Access Benchmark of Statistical and Machine-Learning Anomaly Detection Methods for Battery Applications (2511.01745v1)

Published 3 Nov 2025 in cs.LG, cs.AI, and stat.ME

Abstract: Battery safety is critical in applications ranging from consumer electronics to electric vehicles and aircraft, where undetected anomalies could trigger safety hazards or costly downtime. In this study, we present OSBAD as an open-source benchmark for anomaly detection frameworks in battery applications. By benchmarking 15 diverse algorithms encompassing statistical, distance-based, and unsupervised machine-learning methods, OSBAD enables a systematic comparison of anomaly detection methods across heterogeneous datasets. In addition, we demonstrate how a physics- and statistics-informed feature transformation workflow enhances anomaly separability by decomposing collective anomalies into point anomalies. To address a major bottleneck in unsupervised anomaly detection due to incomplete labels, we propose a Bayesian optimization pipeline that facilitates automated hyperparameter tuning based on transfer-learning and regression proxies. Through validation on datasets covering both liquid and solid-state chemistries, we further demonstrate the cross-chemistry generalization capability of OSBAD to identify irregularities across different electrochemical systems. By making benchmarking database with open-source reproducible anomaly detection workflows available to the community, OSBAD establishes a unified foundation for developing safe, scalable, and transferable anomaly detection tools in battery analytics. This research underscores the significance of physics- and statistics-informed feature engineering as well as model selection with probabilistic hyperparameter tuning, in advancing trustworthy, data-driven diagnostics for safety-critical energy systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.