Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Prompt Injection as an Emerging Threat: Evaluating the Resilience of Large Language Models (2511.01634v1)

Published 3 Nov 2025 in cs.CR and cs.AI

Abstract: LLMs are increasingly used in intelligent systems that perform reasoning, summarization, and code generation. Their ability to follow natural-language instructions, while powerful, also makes them vulnerable to a new class of attacks known as prompt injection. In these attacks, hidden or malicious instructions are inserted into user inputs or external content, causing the model to ignore its intended task or produce unsafe responses. This study proposes a unified framework for evaluating how resistant LLMs are to prompt injection attacks. The framework defines three complementary metrics such as the Resilience Degradation Index (RDI), Safety Compliance Coefficient (SCC), and Instructional Integrity Metric (IIM) to jointly measure robustness, safety, and semantic stability. We evaluated four instruction-tuned models (GPT-4, GPT-4o, LLaMA-3 8B Instruct, and Flan-T5-Large) on five common language tasks: question answering, summarization, translation, reasoning, and code generation. Results show that GPT-4 performs best overall, while open-weight models remain more vulnerable. The findings highlight that strong alignment and safety tuning are more important for resilience than model size alone. Results show that all models remain partially vulnerable, especially to indirect and direct-override attacks. GPT-4 achieved the best overall resilience (RDR = 9.8 %, SCR = 96.4 %), while open-source models exhibited higher performance degradation and lower safety scores. The findings demonstrate that alignment strength and safety tuning play a greater role in resilience than model size alone. The proposed framework offers a structured, reproducible approach for assessing model robustness and provides practical insights for improving LLM safety and reliability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.