Space as Time Through Neuron Position Learning (2511.01632v1)
Abstract: Biological neural networks exist in physical space where distance determines communication delays: a fundamental space-time coupling absent in most artificial neural networks. While recent work has separately explored spatial embeddings and learnable synaptic delays in spiking neural networks, we unify these approaches through a novel neuron position learning algorithm where delays relate to the Euclidean distances between neurons. We derive gradients with respect to neuron positions and demonstrate that this biologically-motivated constraint acts as an inductive bias: networks trained on temporal classification tasks spontaneously self-organize into local, small-world topologies with modular structure emerging under distance-dependent connection costs. Remarkably, we observe unprompted functional specialization aligned with spatial clustering without explictly enforcing it. These findings lay the groundwork for networks in which space and time are intrinsically coupled, offering new avenues for mechanistic interpretability, biologically inspired modelling, and efficient implementations.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.