Security-Aware Joint Sensing, Communication, and Computing Optimization in Low Altitude Wireless Networks (2511.01451v1)
Abstract: As terrestrial resources become increasingly saturated, the research attention is shifting to the low-altitude airspace, with many emerging applications such as urban air taxis and aerial inspection. Low-Altitude Wireless Networks (LAWNs) are the foundation for these applications, with integrated sensing, communications, and computing (ISCC) being one of the core parts of LAWNs. However, the openness of low-altitude airspace exposes communications to security threats, degrading ISCC performance and ultimately compromising the reliability of applications supported by LAWNs. To address these challenges, this paper studies joint performance optimization of ISCC while considering secrecyness of the communications. Specifically, we derive beampattern error, secrecy rate, and age of information (AoI) as performance metrics for sensing, secrecy communication, and computing. Building on these metrics, we formulate a multi-objective optimization problem that balances sensing and computation performance while keeping the probability of communication being detected below a required threshold. We then propose a deep Q-network (DQN)-based multi-objective evolutionary algorithm, which adaptively selects evolutionary operators according to the evolving optimization objectives, thereby leading to more effective solutions. Extensive simulations show that the proposed method achieves a superior balance among sensing accuracy, communication secrecyness, and information freshness compared with baseline algorithms, thereby safeguarding ISCC performance and LAWN-supported low-altitude applications.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.