Papers
Topics
Authors
Recent
2000 character limit reached

Terrain-Enhanced Resolution-aware Refinement Attention for Off-Road Segmentation (2511.01434v1)

Published 3 Nov 2025 in cs.CV

Abstract: Off-road semantic segmentation suffers from thick, inconsistent boundaries, sparse supervision for rare classes, and pervasive label noise. Designs that fuse only at low resolution blur edges and propagate local errors, whereas maintaining high-resolution pathways or repeating high-resolution fusions is costly and fragile to noise. We introduce a resolutionaware token decoder that balances global semantics, local consistency, and boundary fidelity under imperfect supervision. Most computation occurs at a low-resolution bottleneck; a gated cross-attention injects fine-scale detail, and only a sparse, uncertainty-selected set of pixels is refined. The components are co-designed and tightly integrated: global self-attention with lightweight dilated depthwise refinement restores local coherence; a gated cross-attention integrates fine-scale features from a standard high-resolution encoder stream without amplifying noise; and a class-aware point refinement corrects residual ambiguities with negligible overhead. During training, we add a boundary-band consistency regularizer that encourages coherent predictions in a thin neighborhood around annotated edges, with no inference-time cost. Overall, the results indicate competitive performance and improved stability across transitions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.