Papers
Topics
Authors
Recent
2000 character limit reached

An Adjoint Method for Differentiable Fluid Simulation on Flow Maps (2511.01259v1)

Published 3 Nov 2025 in cs.GR and physics.flu-dyn

Abstract: This paper presents a novel adjoint solver for differentiable fluid simulation based on bidirectional flow maps. Our key observation is that the forward fluid solver and its corresponding backward, adjoint solver share the same flow map as the forward simulation. In the forward pass, this map transports fluid impulse variables from the initial frame to the current frame to simulate vortical dynamics. In the backward pass, the same map propagates adjoint variables from the current frame back to the initial frame to compute gradients. This shared long-range map allows the accuracy of gradient computation to benefit directly from improvements in flow map construction. Building on this insight, we introduce a novel adjoint solver that solves the adjoint equations directly on the flow map, enabling long-range and accurate differentiation of incompressible flows without differentiating intermediate numerical steps or storing intermediate variables, as required in conventional adjoint methods. To further improve efficiency, we propose a long-short time-sparse flow map representation for evolving adjoint variables. Our approach has low memory usage, requiring only 6.53GB of data at a resolution of $1923$ while preserving high accuracy in tracking vorticity, enabling new differentiable simulation tasks that require precise identification, prediction, and control of vortex dynamics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: