Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Contextual Relevance and Adaptive Sampling for LLM-Based Document Reranking (2511.01208v1)

Published 3 Nov 2025 in cs.IR

Abstract: Reranking algorithms have made progress in improving document retrieval quality by efficiently aggregating relevance judgments generated by LLMs. However, identifying relevant documents for queries that require in-depth reasoning remains a major challenge. Reasoning-intensive queries often exhibit multifaceted information needs and nuanced interpretations, rendering document relevance inherently context dependent. To address this, we propose contextual relevance, which we define as the probability that a document is relevant to a given query, marginalized over the distribution of different reranking contexts it may appear in (i.e., the set of candidate documents it is ranked alongside and the order in which the documents are presented to a reranking model). While prior works have studied methods to mitigate the positional bias LLMs exhibit by accounting for the ordering of documents, we empirically find that the compositions of these batches also plays an important role in reranking performance. To efficiently estimate contextual relevance, we propose TS-SetRank, a sampling-based, uncertainty-aware reranking algorithm. Empirically, TS-SetRank improves nDCG@10 over retrieval and reranking baselines by 15-25% on BRIGHT and 6-21% on BEIR, highlighting the importance of modeling relevance as context-dependent.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: