Papers
Topics
Authors
Recent
2000 character limit reached

A Topology-Aware Graph Convolutional Network for Human Pose Similarity and Action Quality Assessment (2511.01194v1)

Published 3 Nov 2025 in cs.CV and cs.AI

Abstract: Action Quality Assessment (AQA) requires fine-grained understanding of human motion and precise evaluation of pose similarity. This paper proposes a topology-aware Graph Convolutional Network (GCN) framework, termed GCN-PSN, which models the human skeleton as a graph to learn discriminative, topology-sensitive pose embeddings. Using a Siamese architecture trained with a contrastive regression objective, our method outperforms coordinate-based baselines and achieves competitive performance on AQA-7 and FineDiving benchmarks. Experimental results and ablation studies validate the effectiveness of leveraging skeletal topology for pose similarity and action quality assessment.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.