LiDAR-VGGT: Cross-Modal Coarse-to-Fine Fusion for Globally Consistent and Metric-Scale Dense Mapping (2511.01186v1)
Abstract: Reconstructing large-scale colored point clouds is an important task in robotics, supporting perception, navigation, and scene understanding. Despite advances in LiDAR inertial visual odometry (LIVO), its performance remains highly sensitive to extrinsic calibration. Meanwhile, 3D vision foundation models, such as VGGT, suffer from limited scalability in large environments and inherently lack metric scale. To overcome these limitations, we propose LiDAR-VGGT, a novel framework that tightly couples LiDAR inertial odometry with the state-of-the-art VGGT model through a two-stage coarse- to-fine fusion pipeline: First, a pre-fusion module with robust initialization refinement efficiently estimates VGGT poses and point clouds with coarse metric scale within each session. Then, a post-fusion module enhances cross-modal 3D similarity transformation, using bounding-box-based regularization to reduce scale distortions caused by inconsistent FOVs between LiDAR and camera sensors. Extensive experiments across multiple datasets demonstrate that LiDAR-VGGT achieves dense, globally consistent colored point clouds and outperforms both VGGT-based methods and LIVO baselines. The implementation of our proposed novel color point cloud evaluation toolkit will be released as open source.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.