Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Seed-Induced Uniqueness in Transformer Models: Subspace Alignment Governs Subliminal Transfer (2511.01023v1)

Published 2 Nov 2025 in eess.SP, cs.AI, cs.CR, and cs.LG

Abstract: We analyze subliminal transfer in Transformer models, where a teacher embeds hidden traits that can be linearly decoded by a student without degrading main-task performance. Prior work often attributes transferability to global representational similarity, typically quantified with Centered Kernel Alignment (CKA). Using synthetic corpora with disentangled public and private labels, we distill students under matched and independent random initializations. We find that transfer strength hinges on alignment within a trait-discriminative subspace: same-seed students inherit this alignment and show higher leakage {\tau \approx} 0.24, whereas different-seed students -- despite global CKA > 0.9 -- exhibit substantially reduced excess accuracy {\tau \approx} 0.12 - 0.13. We formalize this with subspace-level CKA diagnostic and residualized probes, showing that leakage tracks alignment within the trait-discriminative subspace rather than global representational similarity. Security controls (projection penalty, adversarial reversal, right-for-the-wrong-reasons regularization) reduce leakage in same-base models without impairing public-task fidelity. These results establish seed-induced uniqueness as a resilience property and argue for subspace-aware diagnostics for secure multi-model deployments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.