Papers
Topics
Authors
Recent
2000 character limit reached

FREESH: Fair, Resource- and Energy-Efficient Scheduling for LLM Serving on Heterogeneous GPUs (2511.00807v1)

Published 2 Nov 2025 in cs.DC

Abstract: The ever-increasing computation and energy demand for LLM and AI agents call for holistic and efficient optimization of LLM serving systems. In practice, heterogeneous GPU clusters can be deployed in a geographically distributed manner, while LLM load also observes diversity in terms of both query traffic and serving patterns. LLM queries running on advanced GPUs during a high-emission hour at one location can lead to significantly higher carbon footprints versus same queries running on mid-level GPUs at a low-emission time and location. By observing LLM serving requirements and leveraging spatiotemporal computation flexibility, we consider the joint routing and scheduling problem, and propose FREESH to cooperatively run a group of data centers while minimizing user-specified carbon or energy objectives. FREESH identifies the optimal configurations of balanced load serving by matching distinct GPU instance's power-throughput characteristics with predictable LLM query length and workloads. To ensure both latency and fairness requirements, FREESH identifies optimized parallelism and query routing schedules together with dynamic GPU frequency scaling for power saving, and Least-Laxity-First (LLF) serving strategy for query scheduling. During the 1-hour serving on production workloads, FREESH reduces energy by 28.6% and emissions by 45.45% together with improvements in SLO attainment and fairness.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: