Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging Multi-Agent System (MAS) and Fine-Tuned Small Language Models (SLMs) for Automated Telecom Network Troubleshooting (2511.00651v1)

Published 1 Nov 2025 in cs.AI, cs.CL, cs.IT, cs.MA, cs.NI, and math.IT

Abstract: Telecom networks are rapidly growing in scale and complexity, making effective management, operation, and optimization increasingly challenging. Although AI has been applied to many telecom tasks, existing models are often narrow in scope, require large amounts of labeled data, and struggle to generalize across heterogeneous deployments. Consequently, network troubleshooting continues to rely heavily on Subject Matter Experts (SMEs) to manually correlate various data sources to identify root causes and corrective actions. To address these limitations, we propose a Multi-Agent System (MAS) that employs an agentic workflow, with LLMs coordinating multiple specialized tools for fully automated network troubleshooting. Once faults are detected by AI/ML-based monitors, the framework dynamically activates agents such as an orchestrator, solution planner, executor, data retriever, and root-cause analyzer to diagnose issues and recommend remediation strategies within a short time frame. A key component of this system is the solution planner, which generates appropriate remediation plans based on internal documentation. To enable this, we fine-tuned a Small LLM (SLM) on proprietary troubleshooting documents to produce domain-grounded solution plans. Experimental results demonstrate that the proposed framework significantly accelerates troubleshooting automation across both Radio Access Network (RAN) and Core network domains.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.