Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Human-AI Programming Role Optimization: Developing a Personality-Driven Self-Determination Framework (2511.00417v1)

Published 1 Nov 2025 in cs.SE, cs.AI, and cs.HC

Abstract: As artificial intelligence transforms software development, a critical question emerges: how can developers and AI systems collaborate most effectively? This dissertation optimizes human-AI programming roles through self-determination theory and personality psychology, introducing the Role Optimization Motivation Alignment (ROMA) framework. Through Design Science Research spanning five cycles, this work establishes empirically-validated connections between personality traits, programming role preferences, and collaborative outcomes, engaging 200 experimental participants and 46 interview respondents. Key findings demonstrate that personality-driven role optimization significantly enhances self-determination and team dynamics, yielding 23% average motivation increases among professionals and up to 65% among undergraduates. Five distinct personality archetypes emerge: The Explorer (high Openness/low Agreeableness), The Orchestrator (high Extraversion/Agreeableness), The Craftsperson (high Neuroticism/low Extraversion), The Architect (high Conscientiousness), and The Adapter (balanced profile). Each exhibits distinct preferences for programming roles (Co-Pilot, Co-Navigator, Agent), with assignment modes proving crucial for satisfaction. The dissertation contributes: (1) an empirically-validated framework linking personality traits to role preferences and self-determination outcomes; (2) a taxonomy of AI collaboration modalities mapped to personality profiles while preserving human agency; and (3) an ISO/IEC 29110 extension enabling Very Small Entities to implement personality-driven role optimization within established standards. Keywords: artificial intelligence, human-computer interaction, behavioral software engineering, self-determination theory, personality psychology, phenomenology, intrinsic motivation, pair programming, design science research, ISO/IEC 29110

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: