Reject Only Critical Tokens: Pivot-Aware Speculative Decoding (2511.00351v1)
Abstract: Speculative Decoding (SD) ensures that the output matches the target model's distribution exactly. However, we argue that this distribution matching requirement is too stringent and results in unnecessarily low acceptance rates, limiting potential speedups. Instead, we advocate a reformulation of the decoding objective: the proposed decoding strategy should match the expected utility, i.e., the task-specific performance, of the target model. This perspective also aligns better with real-world use cases of LLMs, where utility (e.g., code correctness, factual accuracy) is often more important than sampling distribution. Based on this reformulation, we propose a novel decoding strategy: Pivot-Aware Speculative Decoding, which rejects only those tokens that would lead to a utility drop in the final output. We refer to these critical tokens as pivot tokens. We propose a method for labeling tokens as pivotal or non-pivotal and train a lightweight classifier to detect them. This method can be viewed as a relaxed version of standard SD, which offers much higher acceptance while preserving utility. We evaluate our method across various datasets, demonstrating that we can achieve up to $2.5\times$ speedup with comparable utility. Source code is available at https://github.com/amir-zsh/PAD.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.