Papers
Topics
Authors
Recent
2000 character limit reached

SHAP values through General Fourier Representations: Theory and Applications (2511.00185v1)

Published 31 Oct 2025 in math.OC, math.AP, and stat.ML

Abstract: This article establishes a rigorous spectral framework for the mathematical analysis of SHAP values. We show that any predictive model defined on a discrete or multi-valued input space admits a generalized Fourier expansion with respect to an orthonormalisation tensor-product basis constructed under a product probability measure. Within this setting, each SHAP attribution can be represented as a linear functional of the model's Fourier coefficients. Two complementary regimes are studied. In the deterministic regime, we derive quantitative stability estimates for SHAP values under Fourier truncation, showing that the attribution map is Lipschitz continuous with respect to the distance between predictors. In the probabilistic regime, we consider neural networks in their infinite-width limit and prove convergence of SHAP values toward those induced by the corresponding Gaussian process prior, with explicit error bounds in expectation and with high probability based on concentration inequalities. We also provide a numerical experiment on a clinical unbalanced dataset to validate the theoretical findings.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 29 likes about this paper.