Subjective inference (2511.00173v1)
Abstract: An agent observes a clue, and an analyst observes an inference: a ranking of events on the basis of how corroborated they are by the clue. We prove that if the inference satisfies the axioms of Villegas (1964) except for the classic qualitative probability axiom of monotonicity, then it has a unique normalized signed measure representation (Theorem 1). Moreover, if the inference also declares the largest event equivalent to the smallest event, then it can be represented as a difference between a posterior and a prior such that the former is the conditional probability of the latter with respect to an assessed event that is interpreted as a clue guess. Across these Bayesian representations, the posterior is unique, all guesses are in a suitable sense equivalent, and the prior is determined by the weight it assigns to each possible guess (Theorem 2). However, observation of a prior and posterior compatible with the inference could reveal that all of these guesses are wrong.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.