Papers
Topics
Authors
Recent
2000 character limit reached

Spiking Neural Networks: The Future of Brain-Inspired Computing (2510.27379v1)

Published 31 Oct 2025 in cs.NE and cs.AI

Abstract: Spiking Neural Networks (SNNs) represent the latest generation of neural computation, offering a brain-inspired alternative to conventional Artificial Neural Networks (ANNs). Unlike ANNs, which depend on continuous-valued signals, SNNs operate using distinct spike events, making them inherently more energy-efficient and temporally dynamic. This study presents a comprehensive analysis of SNN design models, training algorithms, and multi-dimensional performance metrics, including accuracy, energy consumption, latency, spike count, and convergence behavior. Key neuron models such as the Leaky Integrate-and-Fire (LIF) and training strategies, including surrogate gradient descent, ANN-to-SNN conversion, and Spike-Timing Dependent Plasticity (STDP), are examined in depth. Results show that surrogate gradient-trained SNNs closely approximate ANN accuracy (within 1-2%), with faster convergence by the 20th epoch and latency as low as 10 milliseconds. Converted SNNs also achieve competitive performance but require higher spike counts and longer simulation windows. STDP-based SNNs, though slower to converge, exhibit the lowest spike counts and energy consumption (as low as 5 millijoules per inference), making them optimal for unsupervised and low-power tasks. These findings reinforce the suitability of SNNs for energy-constrained, latency-sensitive, and adaptive applications such as robotics, neuromorphic vision, and edge AI systems. While promising, challenges persist in hardware standardization and scalable training. This study concludes that SNNs, with further refinement, are poised to propel the next phase of neuromorphic computing.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.