Papers
Topics
Authors
Recent
2000 character limit reached

Generalized Maximum Entropy: When and Why you need it (2510.27006v1)

Published 30 Oct 2025 in stat.ME, physics.data-an, and q-bio.PE

Abstract: The classical Maximum-Entropy Principle (MEP) based on Shannon entropy is widely used to construct least-biased probability distributions from partial information. However, the Shore-Johnson axioms that single out the Shannon functional hinge on strong system independence, an assumption often violated in real-world, strongly correlated systems. We provide a self-contained guide to when and why practitioners should abandon the Shannon form in favour of the one-parameter Uffink-Jizba-Korbel (UJK) family of generalized entropies. After reviewing the Shore and Johnson axioms from an applied perspective, we recall the most commonly used entropy functionals and locate them within the UJK family. The need for generalized entropies is made clear with two applications, one rooted in economics and the other in ecology. A simple mathematical model worked out in detail shows the power of generalized maximum entropy approaches in dealing with cases where strong system independence does not hold. We conclude with practical guidelines for choosing an entropy measure and reporting results so that analyses remain transparent and reproducible.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.