Papers
Topics
Authors
Recent
2000 character limit reached

Mixture-of-Transformers Learn Faster: A Theoretical Study on Classification Problems (2510.27004v1)

Published 30 Oct 2025 in cs.LG

Abstract: Mixture-of-Experts (MoE) models improve transformer efficiency but lack a unified theoretical explanation, especially when both feed-forward and attention layers are allowed to specialize. To this end, we study the Mixture-of-Transformers (MoT), a tractable theoretical framework in which each transformer block acts as an expert governed by a continuously trained gating network. This design allows us to isolate and study the core learning dynamics of expert specialization and attention alignment. In particular, we develop a three-stage training algorithm with continuous training of the gating network, and show that each transformer expert specializes in a distinct class of tasks and that the gating network accurately routes data samples to the correct expert. Our analysis shows how expert specialization reduces gradient conflicts and makes each subtask strongly convex. We prove that the training drives the expected prediction loss to near zero in $O(\log(\epsilon{-1}))$ iteration steps, significantly improving over the $O(\epsilon{-1})$ rate for a single transformer. We further validate our theoretical findings through extensive real-data experiments, demonstrating the practical effectiveness of MoT. Together, these results offer the first unified theoretical account of transformer-level specialization and learning dynamics, providing practical guidance for designing efficient large-scale models.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.