Papers
Topics
Authors
Recent
2000 character limit reached

Discovering EV Charging Site Archetypes Through Few Shot Forecasting: The First U.S.-Wide Study (2510.26910v1)

Published 30 Oct 2025 in cs.LG

Abstract: The decarbonization of transportation relies on the widespread adoption of electric vehicles (EVs), which requires an accurate understanding of charging behavior to ensure cost-effective, grid-resilient infrastructure. Existing work is constrained by small-scale datasets, simple proximity-based modeling of temporal dependencies, and weak generalization to sites with limited operational history. To overcome these limitations, this work proposes a framework that integrates clustering with few-shot forecasting to uncover site archetypes using a novel large-scale dataset of charging demand. The results demonstrate that archetype-specific expert models outperform global baselines in forecasting demand at unseen sites. By establishing forecast performance as a basis for infrastructure segmentation, we generate actionable insights that enable operators to lower costs, optimize energy and pricing strategies, and support grid resilience critical to climate goals.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.