Papers
Topics
Authors
Recent
2000 character limit reached

UP2D: Uncertainty-aware Progressive Pseudo-label Denoising for Source-Free Domain Adaptive Medical Image Segmentation (2510.26826v1)

Published 29 Oct 2025 in eess.IV

Abstract: Medical image segmentation models face severe performance drops under domain shifts, especially when data sharing constraints prevent access to source images. We present a novel Uncertainty-aware Progressive Pseudo-label Denoising (UP2D) framework for source-free domain adaptation (SFDA), designed to mitigate noisy pseudo-labels and class imbalance during adaptation. UP2D integrates three key components: (i) a Refined Prototype Filtering module that suppresses uninformative regions and constructs reliable class prototypes to denoise pseudo-labels, (ii) an Uncertainty-Guided EMA (UG-EMA) strategy that selectively updates the teacher model based on spatially weighted boundary uncertainty, and (iii) a quantile-based entropy minimization scheme that focuses learning on ambiguous regions while avoiding overconfidence on easy pixels. This single-stage student-teacher framework progressively improves pseudo-label quality and reduces confirmation bias. Extensive experiments on three challenging retinal fundus benchmarks demonstrate that UP2D achieves state-of-the-art performance across both standard and open-domain settings, outperforming prior UDA and SFDA approaches while maintaining superior boundary precision.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.