Papers
Topics
Authors
Recent
2000 character limit reached

Discovering Causal Relationships Between Time Series With Spatial Structure (2510.26485v1)

Published 30 Oct 2025 in stat.ME

Abstract: Causal discovery is the subfield of causal inference concerned with estimating the structure of cause-and-effect relationships in a system of interrelated variables, as opposed to quantifying the strength of causal effects. As interest in causal discovery builds in fields such as ecology, public health, and environmental sciences where data is regularly collected with spatial and temporal structures, approaches must evolve to manage autocorrelation and complex confounding. As it stands, the few proposed causal discovery algorithms for spatiotemporal data require summarizing across locations, ignore spatial autocorrelation, and/or scale poorly to high dimensions. Here, we introduce our developing framework that extends time-series causal discovery to systems with spatial structure, building upon work on causal discovery across contexts and methods for handling spatial confounding in causal effect estimation. We close by outlining remaining gaps in the literature and directions for future research.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.