Papers
Topics
Authors
Recent
2000 character limit reached

Model Inversion with Layer-Specific Modeling and Alignment for Data-Free Continual Learning (2510.26311v1)

Published 30 Oct 2025 in cs.LG

Abstract: Continual learning (CL) aims to incrementally train a model on a sequence of tasks while retaining performance on prior ones. However, storing and replaying data is often infeasible due to privacy or security constraints and impractical for arbitrary pre-trained models. Data-free CL seeks to update models without access to previous data. Beyond regularization, we employ model inversion to synthesize data from the trained model, enabling replay without storing samples. Yet, model inversion in predictive models faces two challenges: (1) generating inputs solely from compressed output labels causes drift between synthetic and real data, and replaying such data can erode prior knowledge; (2) inversion is computationally expensive since each step backpropagates through the full model. These issues are amplified in large pre-trained models such as CLIP. To improve efficiency, we propose Per-layer Model Inversion (PMI), inspired by faster convergence in single-layer optimization. PMI provides strong initialization for full-model inversion, substantially reducing iterations. To mitigate feature shift, we model class-wise features via Gaussian distributions and contrastive model, ensuring alignment between synthetic and real features. Combining PMI and feature modeling, our approach enables continual learning of new classes by generating pseudo-images from semantic-aware projected features, achieving strong effectiveness and compatibility across multiple CL settings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.