Papers
Topics
Authors
Recent
2000 character limit reached

Semantic Label Drift in Cross-Cultural Translation (2510.25967v1)

Published 29 Oct 2025 in cs.CL

Abstract: Machine Translation (MT) is widely employed to address resource scarcity in low-resource languages by generating synthetic data from high-resource counterparts. While sentiment preservation in translation has long been studied, a critical but underexplored factor is the role of cultural alignment between source and target languages. In this paper, we hypothesize that semantic labels are drifted or altered during MT due to cultural divergence. Through a series of experiments across culturally sensitive and neutral domains, we establish three key findings: (1) MT systems, including modern LLMs, induce label drift during translation, particularly in culturally sensitive domains; (2) unlike earlier statistical MT tools, LLMs encode cultural knowledge, and leveraging this knowledge can amplify label drift; and (3) cultural similarity or dissimilarity between source and target languages is a crucial determinant of label preservation. Our findings highlight that neglecting cultural factors in MT not only undermines label fidelity but also risks misinterpretation and cultural conflict in downstream applications.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.