SoK: Honeypots & LLMs, More Than the Sum of Their Parts? (2510.25939v1)
Abstract: The advent of LLMs promised to resolve the long-standing paradox in honeypot design: achieving high-fidelity deception with low operational risk. However, despite a flurry of research since late 2022, progress has been incremental, and the field lacks a cohesive understanding of the emerging architectural patterns, core challenges, and evaluation paradigms. To fill this gap, this Systematization of Knowledge (SoK) paper provides the first comprehensive overview of this new domain. We survey and systematize three critical, intersecting research areas: first, we provide a taxonomy of honeypot detection vectors, structuring the core problems that LLM-based realism must solve; second, we synthesize the emerging literature on LLM-honeypots, identifying a canonical architecture and key evaluation trends; and third, we chart the evolutionary path of honeypot log analysis, from simple data reduction to automated intelligence generation. We synthesize these findings into a forward-looking research roadmap, arguing that the true potential of this technology lies in creating autonomous, self-improving deception systems to counter the emerging threat of intelligent, automated attackers.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.