Papers
Topics
Authors
Recent
2000 character limit reached

Equation Discovery, Parametric Simulation, and Optimization Using the Physics-Informed Neural Network (PINN) Method for the Heat Conduction Problem (2510.25925v1)

Published 29 Oct 2025 in physics.comp-ph, cs.NA, math-ph, math.MP, and math.NA

Abstract: In this study, the capabilities of the Physics-Informed Neural Network (PINN) method are investigated for three major tasks: modeling, simulation, and optimization in the context of the heat conduction problem. In the modeling phase, the governing equation of heat transfer by conduction is reconstructed through equation discovery using fractional-order derivatives, enabling the identification of the fractional derivative order that best describes the physical behavior. In the simulation phase, the thermal conductivity is treated as a physical parameter, and a parametric simulation is performed to analyze its influence on the temperature field. In the optimization phase, the focus is placed on the inverse problem, where the goal is to infer unknown physical properties from observed data. The effectiveness of the PINN approach is evaluated across these three fundamental engineering problem types and compared against conventional numerical methods. The results demonstrate that although PINNs may not yet outperform traditional numerical solvers in terms of speed and accuracy for forward problems, they offer a powerful and flexible framework for parametric simulation, optimization, and equation discovery, making them highly valuable for inverse and data-driven modeling applications.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.