Papers
Topics
Authors
Recent
2000 character limit reached

Approximating Human Preferences Using a Multi-Judge Learned System (2510.25884v1)

Published 29 Oct 2025 in cs.AI, cs.CL, and cs.LG

Abstract: Aligning LLM-based judges with human preferences is a significant challenge, as they are difficult to calibrate and often suffer from rubric sensitivity, bias, and instability. Overcoming this challenge advances key applications, such as creating reliable reward models for Reinforcement Learning from Human Feedback (RLHF) and building effective routing systems that select the best-suited model for a given user query. In this work, we propose a framework for modeling diverse, persona-based preferences by learning to aggregate outputs from multiple rubric-conditioned judges. We investigate the performance of this approach against naive baselines and assess its robustness through case studies on both human and LLM-judges biases. Our primary contributions include a persona-based method for synthesizing preference labels at scale and two distinct implementations of our aggregator: Generalized Additive Model (GAM) and a Multi-Layer Perceptron (MLP).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.