Papers
Topics
Authors
Recent
2000 character limit reached

zFLoRA: Zero-Latency Fused Low-Rank Adapters (2510.25784v1)

Published 28 Oct 2025 in cs.CL, cs.AI, and cs.LG

Abstract: LLMs are increasingly deployed with task-specific adapters catering to multiple downstream applications. In such a scenario, the additional compute associated with these apparently insignificant number of adapter parameters (typically less than 1% of the base model) turns out to be disproportionately significant during inference time (upto 2.5x times that of the base model). In this paper, we propose a new zero-latency fused low-rank adapter (zFLoRA) that introduces zero or negligible latency overhead on top of the base model. Experimental results on LLMs of size 1B, 3B and 7B show that zFLoRA compares favorably against the popular supervised fine-tuning benchmarks including low-rank adapters (LoRA) as well as full fine-tuning (FFT). Experiments are conducted on 18 different tasks across three different categories namely commonsense reasoning, math reasoning and summary-dialogue. Latency measurements made on NPU (Samsung Galaxy S25+) as well as GPU (NVIDIA H100) platforms show that the proposed zFLoRA adapters introduce zero to negligible latency overhead.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.