Papers
Topics
Authors
Recent
2000 character limit reached

Retrieval Augmented Generation (RAG) for Fintech: Agentic Design and Evaluation (2510.25518v1)

Published 29 Oct 2025 in cs.AI

Abstract: Retrieval-Augmented Generation (RAG) systems often face limitations in specialized domains such as fintech, where domain-specific ontologies, dense terminology, and acronyms complicate effective retrieval and synthesis. This paper introduces an agentic RAG architecture designed to address these challenges through a modular pipeline of specialized agents. The proposed system supports intelligent query reformulation, iterative sub-query decomposition guided by keyphrase extraction, contextual acronym resolution, and cross-encoder-based context re-ranking. We evaluate our approach against a standard RAG baseline using a curated dataset of 85 question--answer--reference triples derived from an enterprise fintech knowledge base. Experimental results demonstrate that the agentic RAG system outperforms the baseline in retrieval precision and relevance, albeit with increased latency. These findings suggest that structured, multi-agent methodologies offer a promising direction for enhancing retrieval robustness in complex, domain-specific settings.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.