Papers
Topics
Authors
Recent
2000 character limit reached

DGAI: Decoupled On-Disk Graph-Based ANN Index for Efficient Updates and Queries (2510.25401v1)

Published 29 Oct 2025 in cs.DB

Abstract: On-disk graph-based indexes are widely used in approximate nearest neighbor (ANN) search systems for large-scale, high-dimensional vectors. However, traditional coupled storage methods, which store vectors within the index, are inefficient for index updates. Coupled storage incurs excessive redundant vector reads and writes when updating the graph topology, leading to significant invalid I/O. To address this issue, we propose a decoupled storage architecture. While a decoupled architecture reduces query performance. To overcome this limitation, we design two tailored strategies: (i) a three-stage query mechanism that leverages multiple PQ compressed vectors to filter invalid I/O and computations, and (ii) an incremental page-level topological reordering strategy that incrementally inserts new nodes into pages containing their most similar neighbors to mitigate read amplification. Together, these techniques substantially reduce both I/O and computational overhead during ANN search. Experimental results show that the decoupled architecture improves update speed by 10.05x for insertions and 6.89x for deletions, while the three-stage query and incremental reordering enhance query efficiency by 2.66x compared to the traditional coupled architecture.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.