Identifying Kronecker product factorizations (2510.25292v1)
Abstract: The Kronecker product is an invaluable tool for data-sparse representations of large networks and matrices with countless applications in machine learning, graph theory and numerical linear algebra. In some instances, the sparsity pattern of large matrices may already hide a Kronecker product. Similarly, a large network, represented by its adjacency matrix, may sometimes be factorized as a Kronecker product of smaller adjacency matrices. In this article, we determine all possible Kronecker factorizations of a binary matrix and visualize them through its decomposition graph. Such sparsity-informed factorizations may later enable good (approximate) Kronecker factorizations of real matrices or reveal the latent structure of a network. The latter also suggests a natural visualization of Kronecker graphs.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.