Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Proof Refinement with LLM-Guided Strategy Selection

Published 29 Oct 2025 in cs.SE | (2510.25103v1)

Abstract: Formal verification via theorem proving enables the expressive specification and rigorous proof of software correctness, but it is difficult to scale due to the significant manual effort and expertise required. While LLMs show potential in proof generation, they frequently produce incorrect proofs on the first attempt and require additional strategies for iterative refinement. However, existing approaches employ fixed refinement strategies and cannot dynamically choose an effective strategy based on the particular issues in a generated proof, which limits their performance. To overcome this limitation, we introduce Adapt, a novel proof refinement framework that leverages an LLM-guided decision-maker to dynamically select a suitable refinement strategy according to the state of the proof assistant and available context of an incorrect proof. We evaluate Adapt on two benchmarks against four existing methods and find that it significantly outperforms the best baseline on both by proving 16.63% and 18.58% more theorems, respectively. Furthermore, we demonstrate Adapt's generalizability by evaluating it across five different LLMs. We also conduct ablation studies to measure the contribution of each component and compare the trade-offs of alternative decision-maker designs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.