Papers
Topics
Authors
Recent
2000 character limit reached

Nonlinear Dynamics In Optimization Landscape of Shallow Neural Networks with Tunable Leaky ReLU

Published 29 Oct 2025 in math.OC, cs.LG, and math.DS | (2510.25060v1)

Abstract: In this work, we study the nonlinear dynamics of a shallow neural network trained with mean-squared loss and leaky ReLU activation. Under Gaussian inputs and equal layer width k, (1) we establish, based on the equivariant gradient degree, a theoretical framework, applicable to any number of neurons k>= 4, to detect bifurcation of critical points with associated symmetries from global minimum as leaky parameter $\alpha$ varies. Typically, our analysis reveals that a multi-mode degeneracy consistently occurs at the critical number 0, independent of k. (2) As a by-product, we further show that such bifurcations are width-independent, arise only for nonnegative $\alpha$ and that the global minimum undergoes no further symmetry-breaking instability throughout the engineering regime $\alpha$ in range (0,1). An explicit example with k=5 is presented to illustrate the framework and exhibit the resulting bifurcation together with their symmetries.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.