Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

WBT-BGRL: A Non-Contrastive Weighted Bipartite Link Prediction Model for Inductive Learning (2510.24927v1)

Published 28 Oct 2025 in cs.LG

Abstract: Link prediction in bipartite graphs is crucial for applications like recommendation systems and failure detection, yet it is less studied than in monopartite graphs. Contrastive methods struggle with inefficient and biased negative sampling, while non-contrastive approaches rely solely on positive samples. Existing models perform well in transductive settings, but their effectiveness in inductive, weighted, and bipartite scenarios remains untested. To address this, we propose Weighted Bipartite Triplet-Bootstrapped Graph Latents (WBT-BGRL), a non-contrastive framework that enhances bootstrapped learning with a novel weighting mechanism in the triplet loss. Using a bipartite architecture with dual GCN encoders, WBT-BGRL is evaluated against adapted state-of-the-art models (T-BGRL, BGRL, GBT, CCA-SSG). Results on real-world datasets (Industry and E-commerce) show competitive performance, especially when weighting is applied during pretraining-highlighting the value of weighted, non-contrastive learning for inductive link prediction in bipartite graphs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.