Papers
Topics
Authors
Recent
2000 character limit reached

Large-Time Analysis of the Langevin Dynamics for Energies Fulfilling Polyak-Łojasiewicz Conditions (2510.24925v1)

Published 28 Oct 2025 in math.AP and math.PR

Abstract: In this work, we take a step towards understanding overdamped Langevin dynamics for the minimization of a general class of objective functions $\mathcal{L}$. We establish well-posedness and regularity of the law $\rho_t$ of the process through novel a priori estimates, and, very importantly, we characterize the large-time behavior of $\rho_t$ under truly minimal assumptions on $\mathcal{L}$. In the case of integrable Gibbs density, the law converges to the normalized Gibbs measure. In the non-integrable case, we prove that the law diffuses. The rate of convergence is $\mathcal{O}(1/t)$. Under a Polyak-Lojasiewicz (PL) condition on $\mathcal{L}$, we also derive sharp exponential contractivity results toward the set of global minimizers. Combining these results we provide the first systematic convergence analysis of Langevin dynamics under PL conditions in non-integrable Gibbs settings: a first phase of exponential in time contraction toward the set of minimizers and then a large-time exploration over it with rate $\mathcal{O}(1/t)$.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.