Papers
Topics
Authors
Recent
2000 character limit reached

Idea2Plan: Exploring AI-Powered Research Planning (2510.24891v1)

Published 28 Oct 2025 in cs.CL and cs.LG

Abstract: LLMs have demonstrated significant potential to accelerate scientific discovery as valuable tools for analyzing data, generating hypotheses, and supporting innovative approaches in various scientific fields. In this work, we investigate how LLMs can handle the transition from conceptual research ideas to well-structured research plans. Effective research planning not only supports scientists in advancing their research but also represents a crucial capability for the development of autonomous research agents. Despite its importance, the field lacks a systematic understanding of LLMs' research planning capability. To rigorously measure this capability, we introduce the Idea2Plan task and Idea2Plan Bench, a benchmark built from 200 ICML 2025 Spotlight and Oral papers released after major LLM training cutoffs. Each benchmark instance includes a research idea and a grading rubric capturing the key components of valid plans. We further propose Idea2Plan JudgeEval, a complementary benchmark to assess the reliability of LLM-based judges against expert annotations. Experimental results show that GPT-5 and GPT-5-mini achieve the strongest performance on the benchmark, though substantial headroom remains for future improvement. Our study provides new insights into LLMs' capability for research planning and lay the groundwork for future progress.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.