Papers
Topics
Authors
Recent
2000 character limit reached

MCIHN: A Hybrid Network Model Based on Multi-path Cross-modal Interaction for Multimodal Emotion Recognition (2510.24827v1)

Published 28 Oct 2025 in cs.CV and cs.MM

Abstract: Multimodal emotion recognition is crucial for future human-computer interaction. However, accurate emotion recognition still faces significant challenges due to differences between different modalities and the difficulty of characterizing unimodal emotional information. To solve these problems, a hybrid network model based on multipath cross-modal interaction (MCIHN) is proposed. First, adversarial autoencoders (AAE) are constructed separately for each modality. The AAE learns discriminative emotion features and reconstructs the features through a decoder to obtain more discriminative information about the emotion classes. Then, the latent codes from the AAE of different modalities are fed into a predefined Cross-modal Gate Mechanism model (CGMM) to reduce the discrepancy between modalities, establish the emotional relationship between interacting modalities, and generate the interaction features between different modalities. Multimodal fusion using the Feature Fusion module (FFM) for better emotion recognition. Experiments were conducted on publicly available SIMS and MOSI datasets, demonstrating that MCIHN achieves superior performance.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.