SwiftEmbed: Ultra-Fast Text Embeddings via Static Token Lookup for Real-Time Applications
Abstract: We present a static token lookup methodology for text embedding generation that achieves 1.12 ms p50 latency for single text embeddings while maintaining 60.6 MTEB average score across 8 representative tasks, corresponding to 89% of contextual model quality. The Rust implementation delivers 50,000 requests per second throughput through static embedding lookup, optimized mean pooling, and zero-copy IEEE754 binary serialization. Evaluation demonstrates exceptional duplicate detection performance (90.1% AP), strong semantic similarity (76.1% Spearman correlation), and domain-specific performance ranging from 75% to 131% of baseline across specialized domains. The system enables real-time embedding applications where sub-5ms latency is critical.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.