Stiff Circuit System Modeling via Transformer
Abstract: Accurate and efficient circuit behavior modeling is a cornerstone of modern electronic design automation. Among different types of circuits, stiff circuits are challenging to model using previous frameworks. In this work, we propose a new approach using Crossformer, which is a current state-of-the-art Transformer model for time-series prediction tasks, combined with Kolmogorov-Arnold Networks (KANs), to model stiff circuit transient behavior. By leveraging the Crossformer's temporal representation capabilities and the enhanced feature extraction of KANs, our method achieves improved fidelity in predicting circuit responses to a wide range of input conditions. Experimental evaluations on datasets generated through SPICE simulations of analog-to-digital converter (ADC) circuits demonstrate the effectiveness of our approach, with significant reductions in training time and error rates.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.