Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improving LLM Reasoning via Dependency-Aware Query Decomposition and Logic-Parallel Content Expansion (2510.24390v1)

Published 28 Oct 2025 in cs.AI

Abstract: The integration of LLMs into real-time Web applications, such as AI-powered search and conversational agents, presents a fundamental Web infrastructure challenge: reconciling the demand for high-quality, complex reasoning with the stringent low-latency and high-throughput requirements of interactive services. Current LLM reasoning, hindered by computationally inefficient sequential generation and rigid reasoning strategies, creates a critical bottleneck for the Web services. Existing approaches typically optimize the LLM reasoning for either efficiency or quality but struggle to achieve both, and thus fail to meet the dual requirements of modern Web platforms. To overcome these limitations, we propose Orion, a novel and efficient reasoning framework that enables dependency-aware query decomposition and logic-parallel content expansion. Concretely, Orion decomposes a single query reasoning process into two synergistic phases: (1) \textit{key point generation}, which distills logically structured key points through retrieval-augmented few-shot prompting, and (2) \textit{content parallel expansion}, which concurrently elaborates on these points based on a dependency graph to ensure logical consistency. Furthermore, Orion introduces a pipeline scheduling mechanism that exploits the complementary computational characteristics of the two phases (generation imposes pressure on GPU computing and expansion stresses on GPU memory) across multiple queries, enabling cross-query parallelism and dramatically improving reasoning performance (\ie, efficiency and quality). Experiments on diverse benchmarks show that Orion not only delivers up to 4.33x higher token generation speed and 3.42x lower answer latency over the baselines but also improves reasoning quality by up to 18.75% through explicitly modeling inter-point dependencies.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: