Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Automatically Benchmarking LLM Code Agents through Agent-Driven Annotation and Evaluation (2510.24358v1)

Published 28 Oct 2025 in cs.SE and cs.CL

Abstract: Recent advances in code agents have enabled automated software development at the project level, supported by LLMs and widely adopted tools. However, existing benchmarks for code agent evaluation face two major limitations: high annotation cost and expertise requirements, and rigid evaluation metrics that rely primarily on unit tests. To address these challenges, we propose an agent-driven benchmark construction pipeline that leverages human supervision to efficiently generate diverse and challenging project-level tasks. Based on this approach, we introduce PRDBench, a novel benchmark comprising 50 real-world Python projects across 20 domains, each with structured Product Requirement Document (PRD) requirements, comprehensive evaluation criteria, and reference implementations. PRDBench features rich data sources, high task complexity, and flexible metrics. We further employ an Agent-as-a-Judge paradigm to score agent outputs, enabling the evaluation of various test types beyond unit tests. Extensive experiments on PRDBench demonstrate its effectiveness in assessing the capabilities of both code agents and evaluation agents, providing a scalable and robust framework for annotation and evaluation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.