Papers
Topics
Authors
Recent
2000 character limit reached

Causal Convolutional Neural Networks as Finite Impulse Response Filters (2510.24125v1)

Published 28 Oct 2025 in cs.LG

Abstract: This study investigates the behavior of Causal Convolutional Neural Networks (CNNs) with quasi-linear activation functions when applied to time-series data characterized by multimodal frequency content. We demonstrate that, once trained, such networks exhibit properties analogous to Finite Impulse Response (FIR) filters, particularly when the convolutional kernels are of extended length exceeding those typically employed in standard CNN architectures. Causal CNNs are shown to capture spectral features both implicitly and explicitly, offering enhanced interpretability for tasks involving dynamic systems. Leveraging the associative property of convolution, we further show that the entire network can be reduced to an equivalent single-layer filter resembling an FIR filter optimized via least-squares criteria. This equivalence yields new insights into the spectral learning behavior of CNNs trained on signals with sparse frequency content. The approach is validated on both simulated beam dynamics and real-world bridge vibration datasets, underlining its relevance for modeling and identifying physical systems governed by dynamic responses.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.