Papers
Topics
Authors
Recent
2000 character limit reached

Graph-Guided Concept Selection for Efficient Retrieval-Augmented Generation

Published 28 Oct 2025 in cs.LG | (2510.24120v1)

Abstract: Graph-based RAG constructs a knowledge graph (KG) from text chunks to enhance retrieval in LLM-based question answering. It is especially beneficial in domains such as biomedicine, law, and political science, where effective retrieval often involves multi-hop reasoning over proprietary documents. However, these methods demand numerous LLM calls to extract entities and relations from text chunks, incurring prohibitive costs at scale. Through a carefully designed ablation study, we observe that certain words (termed concepts) and their associated documents are more important. Based on this insight, we propose Graph-Guided Concept Selection (G2ConS). Its core comprises a chunk selection method and an LLM-independent concept graph. The former selects salient document chunks to reduce KG construction costs; the latter closes knowledge gaps introduced by chunk selection at zero cost. Evaluations on multiple real-world datasets show that G2ConS outperforms all baselines in construction cost, retrieval effectiveness, and answering quality.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.