Graph-Guided Concept Selection for Efficient Retrieval-Augmented Generation
Abstract: Graph-based RAG constructs a knowledge graph (KG) from text chunks to enhance retrieval in LLM-based question answering. It is especially beneficial in domains such as biomedicine, law, and political science, where effective retrieval often involves multi-hop reasoning over proprietary documents. However, these methods demand numerous LLM calls to extract entities and relations from text chunks, incurring prohibitive costs at scale. Through a carefully designed ablation study, we observe that certain words (termed concepts) and their associated documents are more important. Based on this insight, we propose Graph-Guided Concept Selection (G2ConS). Its core comprises a chunk selection method and an LLM-independent concept graph. The former selects salient document chunks to reduce KG construction costs; the latter closes knowledge gaps introduced by chunk selection at zero cost. Evaluations on multiple real-world datasets show that G2ConS outperforms all baselines in construction cost, retrieval effectiveness, and answering quality.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.