Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

OmniText: A Training-Free Generalist for Controllable Text-Image Manipulation (2510.24093v1)

Published 28 Oct 2025 in cs.CV

Abstract: Recent advancements in diffusion-based text synthesis have demonstrated significant performance in inserting and editing text within images via inpainting. However, despite the potential of text inpainting methods, three key limitations hinder their applicability to broader Text Image Manipulation (TIM) tasks: (i) the inability to remove text, (ii) the lack of control over the style of rendered text, and (iii) a tendency to generate duplicated letters. To address these challenges, we propose OmniText, a training-free generalist capable of performing a wide range of TIM tasks. Specifically, we investigate two key properties of cross- and self-attention mechanisms to enable text removal and to provide control over both text styles and content. Our findings reveal that text removal can be achieved by applying self-attention inversion, which mitigates the model's tendency to focus on surrounding text, thus reducing text hallucinations. Additionally, we redistribute cross-attention, as increasing the probability of certain text tokens reduces text hallucination. For controllable inpainting, we introduce novel loss functions in a latent optimization framework: a cross-attention content loss to improve text rendering accuracy and a self-attention style loss to facilitate style customization. Furthermore, we present OmniText-Bench, a benchmark dataset for evaluating diverse TIM tasks. It includes input images, target text with masks, and style references, covering diverse applications such as text removal, rescaling, repositioning, and insertion and editing with various styles. Our OmniText framework is the first generalist method capable of performing diverse TIM tasks. It achieves state-of-the-art performance across multiple tasks and metrics compared to other text inpainting methods and is comparable with specialist methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: