Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Information-Theoretic Discrete Diffusion (2510.24088v1)

Published 28 Oct 2025 in cs.LG, cs.IT, and math.IT

Abstract: We present an information-theoretic framework for discrete diffusion models that yields principled estimators of log-likelihood using score-matching losses. Inspired by the I-MMSE identity for the Gaussian setup, we derive analogous results for the discrete setting. Specifically, we introduce the Information-Minimum Denoising Score Entropy (I-MDSE) relation, which links mutual information between data and its diffused version to the minimum denoising score entropy (DSE) loss. We extend this theory to masked diffusion and establish the Information-Minimum Denoising Cross-Entropy (I-MDCE) relation, connecting cross-entropy losses to mutual information in discrete masked processes. These results provide a time-integral decomposition of the log-likelihood of the data in terms of optimal score-based losses, showing that commonly used losses such as DSE and DCE are not merely variational bounds but tight and principled estimators of log-likelihood. The I-MDCE decomposition further enables practical extensions, including time-free formula, conditional likelihood estimation in prompt-response tasks, and coupled Monte Carlo estimation of likelihood ratios. Experiments on synthetic and real-world data confirm the accuracy, variance stability, and utility of our estimators. The code is publicly available at https://github.com/Dongjae0324/infodis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com