Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

FALQON: Accelerating LoRA Fine-tuning with Low-Bit Floating-Point Arithmetic (2510.24061v1)

Published 28 Oct 2025 in cs.LG and cs.AI

Abstract: Low-bit floating-point (FP) formats, such as FP8, provide significant acceleration and memory savings in model training thanks to native hardware support on modern GPUs and NPUs. However, we analyze that FP8 quantization offers speedup primarily for large-dimensional matrix multiplications, while inherent quantization overheads diminish speedup when applied to low-rank adaptation (LoRA), which uses small-dimensional matrices for efficient fine-tuning of LLMs. To address this limitation, we propose FALQON, a novel framework that eliminates the quantization overhead from separate LoRA computational paths by directly merging LoRA adapters into an FP8-quantized backbone during fine-tuning. Furthermore, we reformulate the forward and backward computations for merged adapters to significantly reduce quantization overhead, and introduce a row-wise proxy update mechanism that efficiently integrates substantial updates into the quantized backbone. Experimental evaluations demonstrate that FALQON achieves approximately a 3$\times$ training speedup over existing quantized LoRA methods with a similar level of accuracy, providing a practical solution for efficient large-scale model fine-tuning. Moreover, FALQON's end-to-end FP8 workflow removes the need for post-training quantization, facilitating efficient deployment. Code is available at https://github.com/iamkanghyunchoi/falqon.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.