Papers
Topics
Authors
Recent
2000 character limit reached

ResNet: Enabling Deep Convolutional Neural Networks through Residual Learning (2510.24036v1)

Published 28 Oct 2025 in cs.CV and cs.AI

Abstract: Convolutional Neural Networks (CNNs) has revolutionized computer vision, but training very deep networks has been challenging due to the vanishing gradient problem. This paper explores Residual Networks (ResNet), introduced by He et al. (2015), which overcomes this limitation by using skip connections. ResNet enables the training of networks with hundreds of layers by allowing gradients to flow directly through shortcut connections that bypass intermediate layers. In our implementation on the CIFAR-10 dataset, ResNet-18 achieves 89.9% accuracy compared to 84.1% for a traditional deep CNN of similar depth, while also converging faster and training more stably.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.