Papers
Topics
Authors
Recent
2000 character limit reached

Diffusion Adaptive Text Embedding for Text-to-Image Diffusion Models (2510.23974v1)

Published 28 Oct 2025 in cs.LG and cs.AI

Abstract: Text-to-image diffusion models rely on text embeddings from a pre-trained text encoder, but these embeddings remain fixed across all diffusion timesteps, limiting their adaptability to the generative process. We propose Diffusion Adaptive Text Embedding (DATE), which dynamically updates text embeddings at each diffusion timestep based on intermediate perturbed data. We formulate an optimization problem and derive an update rule that refines the text embeddings at each sampling step to improve alignment and preference between the mean predicted image and the text. This allows DATE to dynamically adapts the text conditions to the reverse-diffused images throughout diffusion sampling without requiring additional model training. Through theoretical analysis and empirical results, we show that DATE maintains the generative capability of the model while providing superior text-image alignment over fixed text embeddings across various tasks, including multi-concept generation and text-guided image editing. Our code is available at https://github.com/aailab-kaist/DATE.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.