Quantum Mechanics of Stochastic Systems (2510.23654v1)
Abstract: We develop a fundamental framework for the quantum mechanics of stochastic systems (QMSS), showing that classical discrete stochastic processes emerge naturally as perturbations of the quantum harmonic oscillator (QHO). By constructing exact perturbation potentials that transform QHO eigenstates into stochastic representations, we demonstrate that canonical probability distributions, including Binomial, Negative Binomial, and Poisson, arise from specific modifications of the harmonic potential. Each stochastic system is governed by a Count Operator (N), with probabilities determined by squared amplitudes in a Born-rule-like manner. The framework introduces a complete operator algebra for moment generation and information-theoretic analysis, together with modular projection operators (R_M) that enable finite-dimensional approximations supported by rigorous uniform convergence theorems. This mathematical structure underpins True Uniform Random Number Generation (TURNG) [Kuang, Sci. Rep., 2025], eliminating the need for external whitening processes. Beyond randomness generation, the QMSS framework enables quantum probability engineering: the physical realization of classical distributions through designed quantum perturbations. These results demonstrate that stochastic systems are inherently quantum-mechanical in structure, bridging quantum dynamics, statistical physics, and experimental probability realization.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.