Papers
Topics
Authors
Recent
2000 character limit reached

Logic-based Task Representation and Reward Shaping in Multiagent Reinforcement Learning (2510.23615v1)

Published 16 Oct 2025 in cs.MA and cs.RO

Abstract: This paper presents an approach for accelerated learning of optimal plans for a given task represented using Linear Temporal Logic (LTL) in multi-agent systems. Given a set of options (temporally abstract actions) available to each agent, we convert the task specification into the corresponding Buchi Automaton and proceed with a model-free approach which collects transition samples and constructs a product Semi Markov Decision Process (SMDP) on-the-fly. Value-based Reinforcement Learning algorithms can then be used to synthesize a correct-by-design controller without learning the underlying transition model of the multi-agent system. The exponential sample complexity due to multiple agents is dealt with using a novel reward shaping approach. We test the proposed algorithm in a deterministic gridworld simulation for different tasks and find that the reward shaping results in significant reduction in convergence times. We also infer that using options becomes increasing more relevant as the state and action space increases in multi-agent systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.